
Learning-based Mutant Reduction
for Debugging

Yunho Kim
Dept. of Computer Science

Hanyang University

My role in STAAR

2

Mutation-based Fault Localization (MBFL)

• Accurate fault localization technique using mutation analysis
1. MUSE [ICST 14]

• Accurate mutation-based fault
Localization
Expense metric of MUSE is 6.0%

2. MUSEUM [ASE 15, IST 17]
• Accurate mutation-based fault

localization for multilingual programs

3. PRINCE [TOSEM 19]
• Machine learning-based fault

localization using various features
including MBFL and SBFL

• Expense metric of PRINCE is 2.4%

MUSE

PRINCE

3

Challenge: High Runtime Cost

• MBFL suffers from high runtime cost due to execution of all generated
mutants against test suites.

• Example: Localize a fault in grep-2.0

Grep-2.0
(5,696 LoC) Test

~91,764 mutants

Mutant

638 tests

Mutant
Generation

Test
Execution

Susp.
Compute

• Fault localization takes ~117 hours

4

Rank Stmt

1 a=b
2 x++

… …

n If(a>b)

Existing Solutions for Challenge

Category Technique Brief description Target Programs Mutant
Reduction %

Random
Selection

Wong and Mathur
(J. Sys. Soft. 95)

Randomly select 10-40% of generated
mutants

4 Fortran
programs

60-90%

Mutation
Operator
based

Offutt et al.
(TOSEM’96)

5 Fortran expression-level mutation operators 10 Fortran
programs

77.6%

Barbosa et al.
(STVR’01)

10 C mutation operators identified through
proposed 6-step guidelines

27 C programs 65.0%

Namin et al.
(ICSE’08)

28 C mutation operators identified using Cost-
based Linear Regression

7 C programs
(Siemens)

92.6%

Deng et al.
(ICST’13)

Only Statement-Deletion (SSDL-only)
mutation operator

40 Java Classes 81.0%

5

• Use MUSE [ICST 14] to show the effects of mutant reduction on MBFL

… Are NOT appropriate for Debugging

Category Technique Brief description Mutant
Reduction %

MUSE’s Results
(Exam score %)

No Selection 0% 5.1%

Random
Selection

Wong and Mathur
(J. Sys. Soft. 95)

Randomly select 10-40% of generated
mutants

60-90% 16.2%-31.5%

Mutation
Operator
based
Selection

Offutt et al.
(TOSEM’96)

5 Fortran expression-level mutation operators 77.6% 24.5%

Barbosa et al.
(STVR’01)

10 C mutation operators identified through
proposed 6-step guidelines

65.0% 17.2%

Namin et al.
(ICSE’08)

28 C mutation operators identified using Cost-
based Linear Regression

92.6% 15.1%

Deng et al.
(ICST’13)

Only Statement-Deletion (SSDL-only)
mutation operator

81.0% 18.5%

6

• We use MUSE [ICST 14] to show the effects of mutant reduction on MBFL
• Several reduction techniques make MUSE worse than Op2 (12.1%)

Mut. Op. based Mutant Reduction for Debugging

Program
P

Test
Suite T

Set of Mutation
Operators O OOOOOOOOOOOO

Set of Mutants M
generated by O

MUSE(s, T) =
Susp. score of a stmt s

Too many
mutants

Program
P

Test
Suite T

Subset of Mutation
Operators O’ ⊂ O

OOOO
Set of Mutants M’
generated by O’

MUSE’(s, T) =
Formula(some vars on O’)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠,𝑇𝑇)
≈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠,𝑇𝑇)

Mutant
Execution

Mutant
Execution

7

Two Issues

• Issue 1: What should we train the mutant reduction model against?
• Choice 1: Train the model against ideal results
• Choice 2: Train the model against MUSE (i.e., using all mutants)

• Issue 2: Which variable should we use to construct the mutant
reduction model?

8

Fine-grained Mutation Operators - Example
Coarse-grained Operator

OASN
Rule: Arithmetic Operator  Shift Operator

+

-

*

/

%

>>

<<

10 Fine-grained Operators
refined from OASN

+

*

%

<<

>>

<<

>>

+

>>

%

OASN+ >>

OASN+ <<

OASN* >>

OASN% <<

OASN% >>

Domain Range

Domain: set of tokens a mut. op. mutates
Range : set of tokens a mut. op. mutates to

A mutation operator represents a rule to change target program code to create a mutant.

9

Overall Process
• Step 1: Conduct mutation analysis on each program in training data

• Generate a killmap for each program

• Step 2: For each statement s in a program P, calculate:

• MUSE(s,T) =
(∑𝑚𝑚∈𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠

|𝑓𝑓𝑃𝑃(𝑠𝑠)∩𝑝𝑝𝑚𝑚|
f2p+1 −|𝑝𝑝𝑃𝑃(s)∩𝑓𝑓𝑚𝑚|

p2f+1)

(|𝑚𝑚𝑢𝑢𝑢𝑢 𝑠𝑠 | + 1)

• MUSESrn(s,T) =
(∑𝑚𝑚∈𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠𝑟𝑟𝑟 𝑠𝑠

|𝑓𝑓𝑃𝑃(𝑠𝑠)∩𝑝𝑝𝑚𝑚|
f2p+1 −|𝑝𝑝𝑃𝑃(s)∩𝑓𝑓𝑚𝑚|

p2f+1)

(|𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠𝑟𝑟𝑟 𝑠𝑠 | + 1)

• Step 3: Apply CLARS to generate models

• Cost matrix = # mutants generated
by each operator

10

MUSE’s Susp.
score

computation

a reduced set
of mutation
operators

linear function

CLARS

𝑆𝑆𝑟𝑟1 𝑆𝑆𝑟𝑟2 𝑆𝑆𝑟𝑟3 ...

𝑠𝑠1 0.25 0.12 0.71 ...

𝑠𝑠2 0.45 0.75 0.37 ...

𝑠𝑠3 0.87 0.23 0.09 ...

𝑠𝑠3 0.03 0.91 0.66 ...

...

𝑅𝑅′ ⊆ 𝑅𝑅
Mut.
Gen.

𝜙𝜙𝑅𝑅′ 𝑇𝑇
= 𝑐𝑐𝑟𝑟1𝑆𝑆𝑟𝑟1 𝑇𝑇 +⋯

+ 𝑐𝑐𝑟𝑟|𝑅𝑅′|
𝑆𝑆𝑟𝑟|𝑅𝑅′|

𝑇𝑇 +𝑏𝑏

h

0.46

0.23

0.61

0.20

...

𝜸𝜸 0.37 0.41 0.12 ...

𝑃𝑃

𝑇𝑇

Mutant
execution

𝑀𝑀 =
{𝑚𝑚1,𝑚𝑚2, … } KM 𝑚𝑚1 𝑚𝑚2 ...

𝑇𝑇10 0 0 ...

𝑇𝑇20 1 1 ...

𝑇𝑇30 0 0 ...

𝑇𝑇40 1 0 ...

...

Research Questions
• RQ1. Effect of the mutant reduction on mutation-based fault localization

• Efficiency: How much execution time does the reduction technique can reduce?
• Effectiveness: How accurate is MUSE with the proposed mutant reduction in localizing a

target fault in terms of expense metric?

• RQ2. Effect of the fine-grained mutation operators
• How much do fine-grained mutation operators affect the number of selected mutants and

the accuracy of MBFL compared to coarse-grained mutation operators?

• RQ3. Comparison with random mutant selection

• RQ4. Comparison with existing mutation-operator based mutant selection
techniques

11

Prog. #faulty
Vers LoC #tests

flex 19 7254 567
grep 18 5696 809
gzip 16 3040 208
make 19 9820 1006
sed 3 3980 360
Average 15.0 5879.8 2755.8

Target Programs
• We target 75 faulty versions of 5 SIR programs

• Bash and Vim are not included because of time constraints

• Eliminate trivially equivalent, duplicated mutants (md5 checksum comparison)

12

Techniques to Compare
Technique Description Related RQ

AllMutLearn Apply CLARS with fine-grained mutation operators
and learn

RQ1-4

IdealLearn Apply CLARS with fine-grained mutation operators
and learn

RQ1

AllMutLearnTRD Apply CLARS with coarse-grained mutation
operators and learn

RQ2

RNDSN Randomly selects the same number of mutants
generated AllMutLearn

RQ3

Offutt et al.
Barbosa et al.
Namin et al.
Deng et al.

Existing mutation operator-based mutant reduction
techniques

RQ4

13

Experiment Setup

• CLARS learning setup
• Run CLARS 1,000 iterations

• Evaluation setup
• 10-fold cross validation for total 75 faulty versions

• Machine setup
• HW: AMD Ryzen 5950X (max 4.9Ghz) 16C32T, 64GB memory
• OS: Ubuntu 20.04 LTS

14

Results – RQ1: Effects of Mutant Reduction

Target
Programs

MUSE IdealMutLearn AllMutLearn

Time(h) Expense(%) Time(h) Expense(%) Time(h) Expense(%)

flex 9038.5 13.7 1012.3 15.2 953.2 5.5

grep 10786.1 1.3 806.7 9.5 813.6 2.4

gzip 6222.4 5.3 706.5 8.9 309.4 5.9

make 10097.2 3.9 1544.4 6.4 1022.3 5.4

sed 7088.4 1.2 691.4 5.3 661.5 2.7

Average 8646.5 5.1 952.2 9.1 752.0 4.4

• AllMutLearn is 11.5 times faster and 13.7% more accurate than MUSE
• ~10 hours for each fault, on average
• Note that execution time of IdealMutLearn and AllMutLearn does not include learning time

• IdealMutLearn is worse than AllMutLearn in terms of both time and accuracy

15

Results – RQ2: Effects of Fine-grained Mut. Ops.

Target
Programs

AllMutLearnTRD AllMutLearn

Time(h) Expense(%) Time(h) Expense(%)

flex 1477.5 13.1 953.2 5.5

grep 1179.7 4.8 813.6 2.4

gzip 485.8 12.6 309.4 5.9

make 1349.4 12.7 1022.3 5.4

sed 972.4 6.8 661.5 2.7

Average 1093.0 10.0 752.0 4.4

• Fine-grained mutation operator makes AllMutLearn 1.5 times faster and 2.3
times more accurate than AllMutLearnTRD

16

Results – RQ3: Comparison with Random

Target
Programs

RNDSN AllMutLearn

Time(h) Expense(%) Time(h) Expense(%)

flex 953.2 23.9 953.2 5.5

grep 813.6 13.2 813.6 2.4

gzip 309.4 25.1 309.4 5.9

make 1022.3 21.0 1022.3 5.4

sed 661.5 9.3 661.5 2.7

Average 752.0 18.5 752.0 4.4

• AllMutLearn is 4.2 times more accurate than RNDSN

17

Results – RQ4: Comparison with Existing
Mut. Op. based Reduction

Target
Programs

Offutt et al.
(TOSEM’96)

Barbosa et al.
(STVR’01)

Namin et al.
(ICSE’08)

Deng et al.
(ICST’13) AllMutLearn

Time(h) Expense(%) Time(h) Expense(%) Time(h) Expense(%) Time(h) Expense(%) Time(h) Expense(%)

flex 2044.9 35.6 2910.4 15.3 695.6 13.5 1597.1 12.3 953.2 5.5

grep 2343.6 21.3 3850.6 19.5 806.2 12.6 1926.4 20.3 813.6 2.4

gzip 1379.9 26.5 2199.6 11.3 414.4 21.3 1229.5 19.3 309.4 5.9

make 2058.2 19.3 3604.7 19.3 821.9 12.3 1822.5 23.1 1022.3 5.4

sed 1651.3 19.7 2580.2 20.5 508.8 15.6 1239.0 17.4 661.5 2.7

Average 1895.6 24.5 3029.1 17.2 649.4 15.1 1562.9 18.5 752.0 4.4

• AllMutLearn is at least 3.4 times more accurate than the existing operator-based
mutant reduction for debugging

18

Conclusion

• Learning-based mutant reduction can significantly decrease execution as well as
increase accuracy of MBFL

• Fine-grained mutation operators are effective to construct a better mutant
reduction model

19

Future Work

• Through analysis to identify when AllMutLearn works well or bad

• Apply mutant reduction to PRINCE techniques
• PRINCE utilizes various features to improve accuracy and efficiency
• PRINCE with mutant reduction will be better than MUSE with mutant reduction

• Reduce more execution time
• Predictive mutation analysis

20

Q & A

21

	Learning-based Mutant Reduction for Debugging
	My role in STAAR
	Mutation-based Fault Localization (MBFL)
	Challenge: High Runtime Cost
	Existing Solutions for Challenge
	… Are NOT appropriate for Debugging
	Mut. Op. based Mutant Reduction for Debugging
	Two Issues
	Fine-grained Mutation Operators - Example
	Overall Process
	Research Questions
	Target Programs
	Techniques to Compare
	Experiment Setup
	Results – RQ1: Effects of Mutant Reduction
	Results – RQ2: Effects of Fine-grained Mut. Ops.
	Results – RQ3: Comparison with Random
	Results – RQ4: Comparison with Existing �Mut. Op. based Reduction
	Conclusion
	Future Work
	Q & A
	Mutation Analysis Overview
	Mutation Analysis – Overview (1/3)
	Mutation Analysis – Overview (2/3)
	Mutation Analysis – Overview (3/3)
	MUSIC in Detail
	MUSIC Overview
	MUSIC Overview
	Extensibility of MUSIC
	Example
	Configurability of MUSIC
	Avoid Generation of Stillborn Mutants
	CLARS explanation
	Cost-considerate Least Angle Regression (CLARS)
	Fine-grained Mutation Operator
	Fine-grained Mutation Operator - Conjecture
	Fine-grained Mutation Operator - Definition
	Partition Methods for Domain/Range
	Example
	Example – MS(T) vs MSQ(T)
	Example – Coarse-grained Operators
	Example – Fine-grained Operators
	슬라이드 번호 43

