Learning-based M

for Deb

uUtant Reduction

./

gging

Yunho Kim

Dept. of Computer Science

Hanyang University

My role in STAAR

1.1&: *’*~‘1E1-J['U'IJ"~H'*I X 3. JE AT E O XH i XHE E‘JII

SWE&F IHE

yel 4 £57

SWIRHG
s 2gd

SWRILE EAME 98t
Rapid Modeling

PRI Z2Y HS

Bl A 7|8 SWIHL
B4

- A& S SYIHZ| B AEI7|HF SWIHE|
N&3 SWoR X8} NS =
2,18 : ADEYOIHL O

SR8 SWH(0]2] SWIAIZE
- EE-‘I ...-.lr II_.---- 115?} --11-1 :.-- :1_'_?! b

Mutation-based Fault Localization (MBFL)

e Accurate fault localization technique using mutation analysis

1. MUSE [ICST 14]
e Accurate mutation-based fault

Localization
Expense metric of MUSE is 6.0%

2. MUSEUM [ASE 15, IST 17]
e Accurate mutation-based fault

localization for multilingual programs

3. PRINCE [TOSEM 19]

Machine learning-based fault
localization using various features
including MBFL and SBFL

Expense metric of PRINCE is 2.4%

I :Failed test MUSE K'ﬁ‘ 1:stmt 54 ! -
- : Passed test)
k: stmt sk'“_*/]
T vusor—— o e
L ¢ | Test3
ki stmt s, | 1: stmt s, CTest1
| Tests Mutate fac] ag | [
n:stmt s, _ ulty statement Sk W k: stmt Si‘& _
n: stmt s, | Testé
PRINCE Unknown Faults
])) Info.
PRINCE using Machine Learning Rank [Stmt
— — 1 |a=b @
Known 1 Static -
Eaults Feature Features (o) Fault Ranking 5 ot
Extractor Model
. n If(a>b)
Dynamic Machine
Features Learning

Challenge: High Runtime Cost

* MBFL suffers from high runtime cost due to execution of all generated
mutants against test suites.

 Example: Localize a fault in grep-2.0

Grep-2.0
(5,696 LoC)

Mutant

Rank

Stmt

4

Generation

| : [I
Test
) Mutant —
Execution ﬂ

« Fault localization takes “117 hours

a=b/?/

X++

If(a>b)

Existing Solutions for Challenge
* Use MUSE [ICST 14] to show the effects of mutant reduction on MBFL

: : . Mutant
Category Technique Brief description Target Programs Reduction %
Random Wong and Mathur Randomly select 10-40% of generated 4 Fortran 60-90%
Selection (J. Sys. Soft. 95) mutants programs
Offutt et al. 5 Fortran expression-level mutation operators | 10 Fortran 77.6%
(TOSEM’96) programs
_ Barbosa et al. 10 C mutation operators identified through 27 C programs 65.0%
Mutation | (sTyR/01) proposed 6-step guidelines
Operator) _ — :
based Namin et al. 28 C mutation operators identified using Cost- | 7 C programs 92.6%
(ICSE’08) based Linear Regression (Siemens)
Deng et al. Only Statement-Deletion (SSDL-only) 40 Java Classes 81.0%

(ICST’13)

mutation operator

.. Are NOT appropriate for Debugging
* We use MUSE [ICST 14] to show the effects of mutant reduction on MBFL
e Several reduction technigues make MUSE worse than Op2 (12.1%)

Categor Technique Brief description Mutant MUSE's Results
gory a P Reduction % (Exam score %)
No Selection 0% 5.1%
Random Wong and Mathur Randomly select 10-40% of generated 60-90% 16.2%-31.5%
Selection (J. Sys. Soft. 95) mutants
Offutt et al. 5 Fortran expression-level mutation operators 77.6% 24.5%
(TOSEM’96)
Mutation | Barbosa et al. 10 C mutation operators identified through 65.0% 17.2%
Operator (STVR’01) proposed 6-step guidelines
based Namin et al. 28 C mutation operators identified using Cost- 92.6% 15.1%
Selection (ICSE’08) based Linear Regression
Deng et al. Only Statement-Deletion (SSDL-only) 81.0% 18.5%
(ICST’13) mutation operator

Mut. Op. based Mutant Reduction for Debugging

.

Set of Mutation
Operators O

S

v

/

Test
Suite T

Mutant
Execution

N

Set of Mutants
generated by O

Too many
mutants

MUSE(s, T) =

Subset of Mutation

Operators O’ < O

il

»,

4

Set of Mutants M’
generated by O’

Test
Suite T

Mutant
Execution

Susp. score of a stmt s

A 4

MUSE(s,T)
~ MUSE'(s,T)

a

MUSE’(s, T) =

Formula(some vars on O’)

7

Two Issues

* Issue 1: What should we train the mutant reduction model against?
e Choice 1: Train the model against ideal results
e Choice 2: Train the model against MUSE (i.e., using all mutants)

e Issue 2: Which variable should we use to construct the mutant
reduction model?

Fine-grained Mutation Operators - Example

A mutation operator represents a rule to change target program code to create a mutant.

Coarse-grained Operator

Rule: Arithmetic Operator = Shift Operator

Pomain

OASN refined from OASN

Domain: set of tokens a mut. op. mutates
Range : set of tokens a mut. op. mutates to

10 Fine-grained Operators

OASN, ...

OASN, , ..

OASN. ;..

OASN,, ;..

OASN,, ..

Overall Process

e Step 1: Conduct mutation analysis on each program in training data
* Generate a killmap for each program

* Step 2: For each statement s in a program P, calculate:
£ p©NPml_[ppE)NSmly

o MUSE(s,T) = Qimemut(s) f2pr1 p2ft+1 * Cost matrix = # mutants generated
’ (|mut(s)| + 1) by each operator
_ memuts,.,(S) f2p+1 p2f+1
Sri1
» Step 3: Apply CLARS to generate models —
Mut. M = () 4) Sty | Sr, | Sk | ,I’
Gen. || fmymy, -} | | kM|my |myp |- 1025012 0.71 | .|| 0.46 L7 R ER
le 00 MUSE’s Susp 51045075037 |..|] 0.23 N arfeduced set
T, | 1 | 1 |. . of mutation
execution I 010 computation s3] 0.0310.91]0.66 ||| 0.20
> T 1] 0 br (T)
4
ke =Cr15r1(T) + -
y 1037041 012" F Crr S (D +P
\ J - 4 N))
linearfunction

Research Questions

RQ1. Effect of the mutant reduction on mutation-based fault localization
* Efficiency: How much execution time does the reduction technique can reduce?

» Effectiveness: How accurate is MUSE with the proposed mutant reduction in localizing a
target fault in terms of expense metric?

RQ2. Effect of the fine-grained mutation operators

* How much do fine-grained mutation operators affect the number of selected mutants and
the accuracy of MBFL compared to coarse-grained mutation operators?

RQ3. Comparison with random mutant selection

RQ4. Comparison with existing mutation-operator based mutant selection
techniques

Target Programs

* We target 75 faulty versions of 5 SIR programs
 Bash and Vim are not included because of time constraints

 Eliminate trivially equivalent, duplicated mutants (md5 checksum comparison)

Prog. #ﬁeurfy LoC Htests
flex 19 7254 567
grep 18 5696 809
gzip 16 3040 208
make 19 9820 1006
sed 3 3980 360
Average 15.0 5879.8 2755.8

Techniques to Compare

Technique Description Related RQ

AllMutLearn Apply CLARS with fine-grained mutation operators | RQ1-4
and learn

IdealLearn Apply CLARS with fine-grained mutation operators |RQ1
and learn

AllMutLearn™® | Apply CLARS with coarse-grained mutation RQ2
operators and learn

RND>N Randomly selects the same number of mutants RQ3
generated AllMutLearn

Offutt et al. Existing mutation operator-based mutant reduction | RQ4

Barbosa et al. techniques

Namin et al.

Deng et al.

Experiment Setup

* CLARS learning setup
* Run CLARS 1,000 iterations

e Evaluation setup
» 10-fold cross validation for total 75 faulty versions

* Machine setup
* HW: AMD Ryzen 5950X (max 4.9Ghz) 16C32T, 64GB memory
e OS: Ubuntu 20.04 LTS

Results — RQ1: Effects of Mutant Reduction

e AlIMutLearn is 11.5 times faster and 13.7% more accurate than MUSE

* ~10 hours for each fault, on average
* Note that execution time of IdealMutLearn and AllMutLearn does not include learning time

e |dealMutLearn is worse than AllMutLearn in terms of both time and accuracy

Target MUSE |dealMutLearn AllMutLearn

Programs Time(h) | Expense(%) Time(h) Expense(%) Time(h) Expense(%)
flex 9038.5 13.7 1012.3 15.2 953.2 5.5
grep 10786.1 1.3 806.7 9.5 813.6 2.4
gzip 6222.4 5.3 706.5 8.9 309.4 5.9
make 10097.2 3.9 1544.4 6.4 1022.3 54
sed 7088.4 1.2 691.4 5.3 661.5 2.7
Average 8646.5 5.1 952.2 9.1 752.0 4.4

Results — RQ2: Effects of Fine-grained Mut. Ops.

* Fine-grained mutation operator makes AllMutLearn 1.5 times faster and 2.3
times more accurate than AllMutLearn™P

Target AllIMutLearnTRD AllMutLearn
Programs Time(h) Expense(%) Time(h) Expense(%)
flex 1477.5 13.1 953.2 5.5
grep 1179.7 4.8 813.6 2.4
gzip 485.8 12.6 309.4 5.9
make 1349.4 12.7 1022.3 5.4
sed 972.4 6.8 661.5 2.7
Average 1093.0 10.0 752.0 4.4

e AllMutLearn is 4.2 times more accurate than RND>N

Results — RQ3: Comparison with Random

Target RND>SN AllMutLearn
Programs Time(h) Expense(%) Time(h) Expense(%)
flex 953.2 23.9 953.2 5.5
grep 813.6 13.2 813.6 2.4
gzip 309.4 25.1 309.4 5.9
make 1022.3 21.0 1022.3 5.4
sed 661.5 9.3 661.5 2.7
Average 752.0 18.5 752.0 4.4

17

Results —
Mut. Op.

RQ4: Comparison with Existing
nased Reduction

* AllMutLearn is at least 3.4 times more accurate than the existing operator-based
mutant reduction for debugging

e i s
Time(h) |Expense(%)| Time(h) [Expense(%)| Time(h) |[Expense(%)| Time(h) [Expense(%)| Time(h) | Expense(%)
flex 2044.9 35.6 | 2910.4 15.3 695.6 13.5| 1597.1 12.3 953.2 5.5
grep 2343.6 21.3 | 3850.6 19.5 806.2 12.6 | 1926.4 20.3 813.6 2.4
gzip 1379.9 26.5 | 2199.6 11.3 414.4 21.3 | 1229.5 19.3 309.4 5.9
make 2058.2 19.3 | 3604.7 19.3 821.9 12.3 | 18225 23.1| 1022.3 5.4
sed 1651.3 19.7 | 2580.2 20.5 508.8 15.6 | 1239.0 17.4| 661.5 2.7
Average 1895.6 24.5 | 3029.1 17.2 649.4 15.1 | 1562.9 18.5 752.0 4.4

18

Conclusion

* Learning-based mutant reduction can significantly decrease execution as well as
increase accuracy of MBFL

* Fine-grained mutation operators are effective to construct a better mutant
reduction model

Future Work

* Through analysis to identify when AllIMutLearn works well or bad

e Apply mutant reduction to PRINCE techniques
* PRINCE utilizes various features to improve accuracy and efficiency
* PRINCE with mutant reduction will be better than MUSE with mutant reduction

e Reduce more execution time
* Predictive mutation analysis

Q&A

	Learning-based Mutant Reduction for Debugging
	My role in STAAR
	Mutation-based Fault Localization (MBFL)
	Challenge: High Runtime Cost
	Existing Solutions for Challenge
	… Are NOT appropriate for Debugging
	Mut. Op. based Mutant Reduction for Debugging
	Two Issues
	Fine-grained Mutation Operators - Example
	Overall Process
	Research Questions
	Target Programs
	Techniques to Compare
	Experiment Setup
	Results – RQ1: Effects of Mutant Reduction
	Results – RQ2: Effects of Fine-grained Mut. Ops.
	Results – RQ3: Comparison with Random
	Results – RQ4: Comparison with Existing �Mut. Op. based Reduction
	Conclusion
	Future Work
	Q & A
	Mutation Analysis Overview
	Mutation Analysis – Overview (1/3)
	Mutation Analysis – Overview (2/3)
	Mutation Analysis – Overview (3/3)
	MUSIC in Detail
	MUSIC Overview
	MUSIC Overview
	Extensibility of MUSIC
	Example
	Configurability of MUSIC
	Avoid Generation of Stillborn Mutants
	CLARS explanation
	Cost-considerate Least Angle Regression (CLARS)
	Fine-grained Mutation Operator
	Fine-grained Mutation Operator - Conjecture
	Fine-grained Mutation Operator - Definition
	Partition Methods for Domain/Range
	Example
	Example – MS(T) vs MSQ(T)
	Example – Coarse-grained Operators
	Example – Fine-grained Operators
	슬라이드 번호 43

